The 14th Annual Allerton Conference on Circuit and System Theory. October, 1976. pp. 606-615

Characteristics of some augmented Petri nets.

J. Smithand T. Mudge.
Proc. of the 14th Ann. Allerton Conf. Circuit and System Theory,

Oct. 1976, pp. 606-615.

trev
Typewritten Text

trev
Typewritten Text

trev
Typewritten Text
The 14th Annual Allerton Conference on Circuit and System Theory. October, 1976. pp. 606-615

it

CHARACTERLISTICS OF SOME AUGMENTED PETRI NETSH

J. E. SMITHT AND T. MUDGE
Coordinated Science Laboratory
University of Illinois, Urbana, Illinois 61801

ABSTRACT

Augmented Petri (APN) nets are defined., They are characterized by
computation sequence sets (C55). These are shown to be the recursively
enumerable sets (RE5). The relationship between APNs and other modified
forms of Petri nets, called Coordination nets (CN) is shown. Several
corollaries about APNs follow.

1 1. INTRODUCTION

Petri nets [Petr] can be used as models for the coordination and
synchronization of computation processes. The decidability of several
important questions comcerning their behavior remains open. This paper
introduces a modified form of Petri net called the augmented Petri net
(APN) for which these problems are undecidable., It goes on to show that,

- from a behavioral viewpoint, APNs are similar to an already existing

modified form by Petri net called Coordination nets (CN) [Pati]. As a by-
product of these demonstrations it is suggested that CNs and Petri nets are
not equivalent as was thought.

Finally, and as a consequence of their computation sequence sets (CSS)
being the recursively enumerable ‘sets (RES), the following corollaries
are shown to be true for APNs:

1. The reachability problem is undecidable,
2. The boundedness problem is undecidable.
3. The coverability problem is undecidable,.

2. DEFINITION OF THE APN

An APN, A, is a 9-tuple defined by:
A = (p,s,F,C,T,£,b,%,s)

where,
= {pl,...,pk} is a set of places.

i K

€ P is the start placc.

=

€ P is the final place.

(9]

= {Cl""’cﬂ} is the constraint set.

= . seeesPs is a constraint class.
e; = by seeenpy]
T = [tl""’tn} is a set of transitions.

f: P X T + N is the forward incidence function. (N is the set
of non-negative integers.)

* This work was supported by the Joint Services Electronics Program (U.S.
Army, U.S, Navy, and U.S. Air Force) under Contract DAAB-07f72-C-02§9

t Currently with the Department of Electrical and Computer Engineering
at the University of Wisconsin, Madison 53706.

b: P X T -+ N is the backward incidence function.
T = {sl,...,sp} is an alphabet of computations.

g: T -+ {£UA} is the output function. (A is the null computa-
tion.)

An APN may be represented graphically as a bi-partite graph, in which
the places and transitions are represented as nodes. To distinguish them,
places are represented by circles and transitions by bars. Arcs connect
places to transitions and vice versa, according to the forward and back-
ward incidence functions. If f(pi’tj) = m, then m arcs connect place 1

to transition tj' Similarly, if b(pi’tj) = n, then n arcs connect transi-
tion tj to place P, Figure 1 gives the definition of an APN together

with its graphical representation.

So far just the static properties of an APN have been presented.
Since an APN is an abstract machine it also has dynamic properties. These
properties are exhibited during the simulation of the APN. Simulation is
defined by a procedure and abstract entities called tokens, which reside
at places and can be represented as dots or numbers in the place circles
of the APN graph.

S a
O—
Rt

P={P,P,P5,Ps,Ps}

5)

C = Pl
- Ip y
WFZ} 5§
- f s |
T= {11213, 14,15
ot otz ta ts btttz tg g
T T T
Fl 1 O O ‘ O Pl 0O Ol C C 9
|
F’[o 1 1 O ‘ o F‘? 1 1 I O 0O 0O
Pzl 0] OO0 |10 Pzl 0|2]0]10 |0
P, 0 0 0 1 1 P 9) 1 1 0O
S / |+ 3
Psy 0| 0|0 |00 Pl olo]oO|oO | 1
b

FP~5301 —_

Figure 1? An Example APN.

Before giving the simulation procedure it is necessary to define some
new terms. A transition ty is priwed if the number of tokens at each

place pj (written |pjl) satisfies,
>
;| 2 £6p5t)
A transition ti is fireable if it is primed and the resulting new token
distribution given by,
|+ | - I j
IPJI lle (Pysty) +b(p,,t,) V]
satisfies the constraint condition viz.
1 Ck_ E C (Ck_ = {pkl,oc-’Pks})
3 Iphl >0 forh = kl,...,ks.

A transition that is fireable may fire to produce the above new token
distribution or state,

The simulation procedure now follows below.

L. Initialize the APN by placing one token in the start place.
2. Compute the set of fireable transitions, U.

3. X£fU = ¢ then halt else:

4. Fire one transition from U.

5. Goto 2.

As an APN is simulated, transition firing sequences record the simu-
lation. Applying the function T to these sequences, term by term, yields
sequences of computations. Associated with each APN is a set of such
sequences, any one of which results when the APN is simulated from its
initial state to the state IF! =1 and pj =0V; > pj # F., This set is

called the computation sequence set [Pete] (written CSS).

Figure 1 shows an APN which has been initialized with a token in

S = pl; Its C55 is the sequences anth-l’n>'0.

3. PROPERTIES OF CSSs

In this section we will show that the CSSs produced by APNs are the
RES (or type 0 languages), so that APNs and Turing machines can be con-
sidered equally powerful at modelling the coordination and synchronization
of computation sequences.

For this, a wesult of [Mati] is used, It can be stated as the
following assertion:

For each § € RES, d a diophantine polynomial {taken here to mean a
polynomial with integer coefficients and integer roots) in n + 1 variables,
P(x,Y.,++4,y), such that if x is a non-negative integer encoding of any

1 n

w € 8§ then ¥ intcpers Yyseee¥, such that P(x,yl,...,yn) = 0. TFurthermorc
¥ integers Yyseees¥ such that P(x,yl,...,yn) = 0 for any x that is not an

encoding of aw € S,

By showing how an APN can be made to behave like such a polynomial, it
can be shown that the RES form a subset of the CSSs for APNs.

y Transilions

[’— Argument

1 . To Input
Y1 z of the
n :O::I‘*C)—* 's Decoder
Y1]
— - ::O:::l C Polynomial Decoder _>|._.(:)
®_— . : Compuler
. ; To Stort of
— ;: ; :" the Decoder
1 . Y G
L .. —L'z JE".“JEVn T
™y
. C=1{z,st){7,s1)
l J Consmnts—\r L J
Argument and ' Terminator ond
Constant Generator Decoder FP-$300

Figure 2, The Construction.

The construction is outlined in Figure 2, Initializing the start
place with a token fires t1 and activates the argument and constant

generator. This causes a set of places corresponding to the integers (x,
yl,...,yn) and the constants of the polynomial to be filled with tokens.

So that each integer i € (yl,...,yn) can range over the positive and
negative integers they are encoded into two places, a positive one Yy (see
Figure 2) and a negative one ?i. The value of any Ys is given by the

difference between the number of tokens in the positive place and the

number in the negative place., Since x only ranges over the non-negative
integers its value is given by the number of tokens in a single place x,
The actual values of x and the y, are determined by an arbitrary number

of firings of the y transitions. This part of the machine is non-deter-
ministic and models a search through vectors of the form (yl,...,yn) to

find if there exists integer values for the v,8 such that for some non-
negative x, P(x,yl,...,yn) = 0, PFailure, for any argument (x,yl,...,yn)

selected in this non-deterministic manner, results in the machine pro-
ducing the A computation sequence and not terminating properly. (Proper
termination corresponds to the state lFI = 1 and pj =0Vj > pj # F; see

the definition of a CSS in section 2.) Success results in the machine
producing a computation sequence which corresponds to an element of the
RES defined by the machines polynomial., The constants produced by the
argument and constant generator, for use as the integer coefficients in
the polynomial computer, are encoded in a manner similar to the y;8.

Their constant value is determined by the use of multiple arcs from t. to

their respective places. L

Once the arguments and constants have been generated, transition t
fires, which activates the polynomial computer by placing tokens in its
E (enable) inputs. The polynomial computer than computes the value of
P(x,yl,...,yn), which is deposited into places z and z along with tokens

in places Cz and CE’ to signify the completion of the polynimial computa-
tion, The tokens in C, and QZ initiate the terminator, which comprises
transition t3 and the places p and st, by moving to place p. Transition
t3 repeatedly fires until it can fire no more., If at this point [z[= |E|
(i.e. the value of P(x,yl,...,yn) = Q) the token at place p is released

(this partially controlled by the constraint set) and moved to place st,
the decoder can now be activated., The decoder receives an equal number
of tokens as were in x (see Figure 2). These are interpreted as a non-
negative encoding of a sequence of symbols from some computation alphabet
£, In Figure 3 the details of a decoder are shown. Its construction is
based on the assumption that the token count in x is a ternary encoding
of sequences in {A,B}* (13 for an A and 23 for a B), so that, for example,

a token count of 149 (121123) in x would represent an encoding of the

sequence BAABA (reading right to left). The operation of the decoder is
straightforward, the contents of place 1 are repeatedly counted down by 3,

by the sequential firing of transitions > t2 and tye The remainder

after each count down will be either one or two tokens, resulting in either

tA or tB firing (this is partially controlled by the constraint set)., The

transitions tA and tB correspond to computations A and B, respectively,

from the computation alphabet, All other transitions in the machine map
to the)\ computation (i.e. g(tA) = A, g(tB) = B and g(t) = A ¥t # tB,tB).

When the sequence has been generated a token is placed in the final place
F as the constraint set dictates. Of course, other encodings can be
assumed and other decoders constructed in order to produce recursively
enumerable sets defined on different alphabets.

Using the construction of Figure 2 any RES can in theory be generated
by considering the alphabet of the set to be a computation alphabet, then
selecting a non-negative encoding of that alphabet (thus defining the de-
coder) and then selecting the appropriate diophantine polynomial (thus
defining the polynomial computer), whose integer roots coincide with those
values for x that are encodings of the members of the required RES.,

Elements of the polynomial computer are shown in Figure 4, There are
three basic ones, an adder, a copier and a multiplier. In the adder, if x
tokens are deposited in place 1, y in place 2 together with a token in Eq
and one in EZ’ the adder will stop with x+y tokens in place 3 and a token

in place C,. The addition will not start until a token is placed in both

E1 and EZ’ and a token is not placed in C0 until places 1 and 2 are empty

and the x+y tokens are in place 3. The Es can be regarded as the cenable
places which start the basic computation and C0 as the completion place

which signifies completion of the basic computation. Notice how the
constraint sct ensures correction operation. From the explanation of the
adder's operation, the operation of the copier element should be apparent.

s 1 Input

C=(1,2)(1,5)(1,3}(3,4}(3,5)(3,6)(5,7)(5,8)

FP—5299

Figure 3. A Decoder.

Operation of the multiplier is slightly more complicated, If x tokens are

deposited in place 1 and y in place 2, then x*y are produced in place 9.

The operation is synchronized by tokens in the places El and E2, and

completion is signified by a token in place CO as with adder. The element

starts by moving the tokens in place 2 into place 7. These tokens are
alternately moved between places 7 and 6. In transfering them from 7 to 6
transition t is fired y times causing y tokens to be deposited in place 9,
This is regulated to occur exactly x times (resulting in x <« y tokens in
place 9) by moving one of the tokens in 1 to place & each time the tokens
in 7 are to fire transition t y times, Place 8 is used to clear the y
tokens from place 7 when place 1 is empty, prior to the completion of the
multiplication.

These basic elements can be combined to form complex adders, copiers
and multipliers (see Figure 5) so that signed arithmetic can be modelled,
for thosce intcgers encoded into a positive and negative place. When
combining basic elements, output places become the input places of subse-
quent elements., Similarly their corresponding C0 and £ places are matched

to preserve the overall sequencing of the computer,

Figure 6 shows how a polynomial computer Lor the polynomial xy 4 3x -
2 can be built from complex adders, copiers and multipliers, The constants
3 and -2 would be generated by the argument and constant generator. In
the case of constant 3, the firing of transition tl of the argument and

constant generator (see Figure 2) would place 3 tokens into one of the
positive input places of the complex multiplier shown at the top of

m
-t =<

>

X+ 3

Adder
C={Cpy,1}{Cy,2]

Co
2
3 Conter
E C=(Co, N (Cq, 1D
Ce
Co
4q
3
1@ —~@s
- Multipligr
26 | C=(2,41(3,8)1,8)(5,7}
@ | 7 6 05 (3,6){Cq 6 (Co,7)
£, Q—rp——
Ea
O
Co
1 Fe-nz9n
Figure 4. The Basic Elements.
X - + - X1
Ex Basic Ary X Basic Cxy
EY‘Y Adder Cxty Ex Copier chxz
Ex= Basic Xy X Basic flel
Ey Y Adder Ci¢? Ex Copier chia
{a) Complex Adder (b) Complex Copier
- X'
Basic Basic A
Copier Multiplier
_——_L———-Boyc X-Y
_ Adder Cxy
Basic Basic
Copier Multiplier
Bos'ic Basic ki
Copier Multiplier |
~—|_ Basic Xy
| Adder C—
Bosi Xy | ¥
asic Basic
Copier Multiplier
FP-5297

Figure 5;

The Complex Elements.

D

»] Multiplier
C I ¥
% . omplex | X-§¥+3.
' Copier >~ Addéi L3
’x‘ - Fo el ~
. = Complex = Compiex | X-¥y+3:-X-2
9 »-| Multiplier 29 Constant =2 Adder ™
X , FP-529¢
~ Ex
% ———ef—
— -
EX
——

Figure 6. Example Polynomial Computer,

Figure 6. Calling this place p+ implies b(p+,tl) = 3. Similarly for

constant -2, except that one of the negative input places of the complex
adder is used to introduce the constant.

LemTa %: From the definition of a CS§ together with the assertion at the

beginning of this section and the construction method that follows it. it

follows that; o
C(C583) 2 RES

where C(CSS) is the class of CSSs produced by all APNs.
Lemma 2: From the definition of an APN it should be clear that the class

of all APNs can be enumerated, ' Hence the class of CSSs produced by all
APNs can be enumerated, i.e.

RES 2 C(CSS)
Theorem: C(CSS) = RES follows from lemmas 1 and 2.

4. ON THE RELATIONSHIP BETWEEN APNs AND CNs

In the definition of APNs, we have allowed the use of multiple arcs
to conncct a particular transition and a particular place, i.c. the ranges
of £ and b are N. WNevertheless, for any APN with multiple arcs, it is
possible to construct an APN with only a single arc connecting any
transition and any place and which has the same CSS as the original APN.
We will call such APNs regtricted APNs. We say the two APNs are be-
haviorally equivalent since they have identical CSSs.

We now give a method for constructing a restricted APN which is
behaviorally equivalent to a given APN., The method presented here is
analogous to the one given by [Hack] for constructing a restricted Petri

net which is equivalent to a generalized Petri net,

l, For each place, P> let k be the maximum number of arcs that go
to or come from Py

placei.beR;place P with k new places, P2 Pigsers Pike Let this set of
i.

3. Using single arcs and 3 transitions, connect the pij into a ring.
4, Distribute the arcs going into and out of P in the original net
over the new places pij such that no transition has more than one arc

connected to any single place.

5. If the constraint set of the original APN contains the following
constraint class {pa,.;.,pz} then the constraint set of the restricted

APN contains the following classes Pax...XPz.

Proving the above requires only aslight modification of that in
[Hack}. Tt is easily seen from the above construction that for every
restricted APN there is a behaviorally equivalent APN and vice versa.

The only difference between restricted APNs and CNs defined by Patil
[Pati] is that a restricted APN has a special start place and special
finish place. Peterson [Pete] effectively shows that the CSSs generated
by Petri nets with start places and finish places are a subset of type 1
languages. This and the fact that the €SSs of restricted APNs must be
the set of type O languages strongly suggest that the modelling power of
CNs is stronger than that of Petri nets.

5. COROLLARIES

There are several corollaries of the Theorem in section 3 concerning
the decidability of certain properties of an APN. The first
such problem is reachability; that is, given an APN and a state, will the
APN ever reach the given state? A second problem is boundedness; that is,
for any particular place p, is there a finite number n such that the APN
can never reach a state such that p has greater than n tokens? A final
problem is coverability; that is, for a given APN and a given state, will
the APN ever reach a state which has at least as many tokens in each place
as the given state has?

Corollary 1: The reachability problem is undecidable.

Proof: The final state of an APN is only reached if the CSS of the APN
is not emply. To determine emptiness of the CSS is equivalent to
determining emptiness of a type O language. This problem is
known to be undecidable.

Corollary 2: The boundedness problem is undecidable,

Proof: To the final place, F, append the places and transitions shown in
Figure 7. The place F' becomes the new final place. We see that
the place B becomes unbounded if F receives a token, Since it
is undecidable whether F receives a token (see Corollary 1) it
must be undecidable whether B is unbounded,

Corallary 3: The coverability problem is undecidable.

Proof: It is undecidable whether the final state is coverable.

-
Y

-0

F =4

FP-5295

Figure 7. Corollary 2.

6. CONCLUSION

Although the behavior of APNs characterized by their CSSs, allows a
greater modelling power (they can model any coordination of events which
can be algorithmically described}, the undecidability of the corollaries
of section 5 rules out any universal techniques for answering some
important questions cencerning the computation processes that they might
model., Since the validity of these corollaries has yet to be established
for Petri nets, the same negative conclusions may not apply.

Since submitting this paper the authors became aware of similax
prior work by Agerwala [Ager]. This proved the result of section 3 using
a similar Petri net type machine called an Extended Petri Net. The
result was achieved by showing that any Turing machine could be directly
constructed as an Extended Petri met, This was also the original proof,
used in this paper. However, so that this paper was not wholly replicative
section 3 was redrafted with a different proof based on the results in
[Mati].

7. REFERENCES

Ager Agerwala, T., "Towards a Theory for the Analysis and Synthesis of
Systems Exhibiting Concurrency,' Ph.D., Thesis, The Johns Hopkins
Univ., 1975.

Hack Hack, M., 'Decision Problems for Petri Nets and Vector Addition
Systems," Technical Memo 539, Project MAC, MIT, Mar. 1975.

Mati Matijesavic, J. V., "Enumerable Sets are Diophantine," Soviet Math.
Dokl., Vol, 11, No. 2 (1970), pp. 354-357.

Pati Patil, S. S., "Coordination of Asynchronous Events,' Ph.D. Thesis,
Dept. E.E,, MIT, Jun. 1970, [MAC-TR-72].

Pete Peterson, J. L., "Modelling of Parallel Systems,' Ph.D. Thesis,
Dept. E.E., Stanford Univ,, Dec. 1973.

Petr Petri, C. A., "Kommunikation Mit Automaten,' Ph.D. Thesis, Univ.
of Bonn, Germany, (1962).

